The Complete Guide to Vibe Coding Best Practices
Vibe coding—using AI tools like Cursor, Claude, and v0 to rapidly build applications—has revolutionized how we ship software. But doing it poorly leads to technical debt, security vulnerabilities, and unmaintainable code. This comprehensive guide covers professional-level techniques for vibe coding effectively.
Research Note: Studies show that while AI-generated code is often functionally correct, only ~10.5% of solutions pass security benchmarks. This guide addresses that gap.
Part 1: Understanding Vibe Coding
What Sets Professional Vibe Coding Apart
Professional vibe coding isn't just about generating code faster—it's about:
| Amateur Approach | Professional Approach | |-----------------|----------------------| | Accept AI output as-is | Review, test, and refine every generation | | Vague, one-shot prompts | Structured, iterative prompt chains | | Fix bugs reactively | Prevent bugs through context and constraints | | Skip documentation | Maintain living documentation for AI context | | Trust blindly | Verify with tests, types, and security audits |
The Vibe Coding Stack
Modern vibe coding typically involves:
- Cursor - AI-native code editor with composer and chat modes
- Claude - Anthropic's AI, excellent for complex reasoning
- v0 - Vercel's UI component generator (shadcn/ui + Tailwind)
- GitHub Copilot - Inline code completion
- ChatGPT / GPT-4 - General-purpose coding assistant
Each tool has strengths. Cursor excels at codebase-aware edits. Claude handles complex multi-file refactors. v0 generates polished UI components. Use them in combination.
Part 2: Project Architecture First
Before writing a single prompt, establish your project foundation.
Define Your Tech Stack Constraints
Create a project specification document that AI can reference:
# Project: CoderVibez
## Tech Stack
- Framework: Next.js 14 (App Router)
- Language: TypeScript (strict mode)
- Styling: Tailwind CSS + shadcn/ui
- Database: Supabase (PostgreSQL)
- Auth: Supabase Auth
- Blockchain: Solana (web3.js)
## Architecture Rules
- Use Server Components by default
- Client Components only for interactivity
- All data fetching in server components or API routes
- Zod for all input validation
- Never expose service role keys to client
## Naming Conventions
- Components: PascalCase (UserCard.tsx)
- Utilities: camelCase (formatDate.ts)
- Constants: SCREAMING_SNAKE_CASE
- Database tables: snake_case
Use Cursor Rules Files
Create a .cursorrules file in your project root. This configures AI behavior project-wide:
# .cursorrules
You are an expert Next.js 14 developer using TypeScript and Tailwind CSS.
## Code Style
- Use functional components with hooks
- Prefer const over let, never use var
- Use async/await over .then() chains
- Always handle errors explicitly
- Add JSDoc comments for public functions
## Architecture
- Server Components by default
- 'use client' only when necessary (hooks, events, browser APIs)
- Colocate related files (component + test + types)
- Use @/ path aliases for imports
## Security
- Never hardcode secrets or API keys
- Always validate user input with Zod
- Use parameterized queries, never string concatenation
- Enable RLS on all Supabase tables
## What NOT to do
- Don't use any type - use unknown if truly unknown
- Don't skip error handling
- Don't use deprecated React patterns (componentWillMount, etc.)
- Don't install new dependencies without explicit approval
Establish Data Models Early
Define your entities and relationships before generating code:
// types/database.ts - Define before coding
interface User {
id: string;
email: string;
role: 'vibe_coder' | 'developer' | 'both';
created_at: string;
}
interface Project {
id: string;
owner_id: string; // FK to User
title: string;
status: 'open' | 'in_progress' | 'completed';
bounty_amount: number;
}
interface Bid {
id: string;
project_id: string; // FK to Project
developer_id: string; // FK to User
amount: number;
status: 'pending' | 'accepted' | 'rejected';
}
Part 3: Advanced Prompting Techniques
The Context Layering Pattern
Professional prompts have multiple layers of context:
## Layer 1: Project Context
"This is a Next.js 14 App Router project using TypeScript,
Tailwind CSS, and Supabase for the backend."
## Layer 2: Current State
"The project currently has:
- User authentication working via Supabase
- A /dashboard page that shows user's projects
- Types defined in src/types/database.ts"
## Layer 3: Specific Task
"Create a new component ProjectCard that displays:
- Project title and description
- Bounty amount in SOL
- Status badge (color-coded)
- 'View Details' button"
## Layer 4: Constraints
"Requirements:
- Use existing Card component from @/components/ui/card
- Match styling of existing UserCard component
- Include loading skeleton state
- Add hover animation"
The "Study First" Pattern
Before generating new code, ask AI to study existing code:
"Before creating the new component, study:
1. src/components/ui/card.tsx - the Card component we'll use
2. src/components/dashboard/user-card.tsx - for styling reference
3. src/types/database.ts - for the Project type definition
Then create ProjectCard.tsx that follows the same patterns."
This produces code that matches your existing codebase style.
Prompt Chaining for Complex Features
Break large features into sequential steps:
# Step 1: Data Layer
"Create the Supabase query function to fetch projects
with their bid counts. Use the existing supabase client pattern."
# Step 2: Type Definitions
"Based on what the query returns, create/update TypeScript
types for ProjectWithBids."
# Step 3: Server Component
"Create a Server Component that fetches projects using
the function from step 1."
# Step 4: Client Interactivity
"Add a Client Component wrapper that handles the
filter/sort UI controls."
# Step 5: Error & Loading States
"Add proper error boundaries, loading skeletons,
and empty state handling."
# Step 6: Tests
"Write tests for the query function and component
rendering with mock data."
Negative Constraints (What NOT to Do)
Explicitly state what to avoid:
"Create an authentication flow.
DO NOT:
- Use localStorage for tokens (use httpOnly cookies)
- Skip email validation
- Allow weak passwords (require 8+ chars, mixed case, numbers)
- Expose any Supabase service role keys
- Use any deprecated Supabase auth methods
- Add any new npm dependencies"
The Self-Critique Pattern
After generating code, ask for a review:
"Review the code you just generated for:
1. Security vulnerabilities (XSS, injection, CSRF)
2. Performance issues (N+1 queries, unnecessary rerenders)
3. Accessibility gaps (ARIA labels, keyboard navigation)
4. Error handling gaps (what if the API fails?)
5. Edge cases (empty data, very long strings, special characters)
List any issues found and provide fixes."
Part 4: Security-First Vibe Coding
AI-generated code often has security gaps. Build security into your workflow.
The Security Audit Checklist
Run this checklist on every AI-generated feature:
Authentication & Authorization
[ ] All protected routes verify authentication
[ ] Users can only access their own data
[ ] Admin functions check admin role
[ ] Session tokens use httpOnly, secure cookies
[ ] Password requirements enforced
[ ] Rate limiting on auth endpoints
Input Validation
[ ] All user input validated with Zod/Yup
[ ] Validation on both client AND server
[ ] File uploads check type, size, content
[ ] SQL queries use parameterization (no string concat)
[ ] No eval() or dangerouslySetInnerHTML with user data
Data Protection
[ ] RLS enabled on all Supabase tables
[ ] Sensitive data not in client bundle
[ ] API keys in environment variables only
[ ] No secrets in git history
[ ] HTTPS enforced
Secure Code Patterns
Input Validation Pattern
// Always validate with Zod before processing
import { z } from 'zod';
const createProjectSchema = z.object({
title: z.string().min(1).max(200),
description: z.string().max(5000),
bounty: z.number().positive().max(1000),
// Never allow role/permissions in user input!
});
export async function createProject(input: unknown) {
// Validate input - throws if invalid
const validated = createProjectSchema.parse(input);
// Now safe to use
const { data, error } = await supabase
.from('projects')
.insert(validated);
}
API Route Security Pattern
// Complete secure API route
export async function POST(request: Request) {
try {
// 1. Authenticate
const supabase = createClient();
const { data: { user } } = await supabase.auth.getUser();
if (!user) {
return Response.json({ error: 'Unauthorized' }, { status: 401 });
}
// 2. Parse & Validate Input
const body = await request.json();
const validated = createProjectSchema.parse(body);
// 3. Authorize (business logic check)
const canCreate = await checkUserCanCreateProject(user.id);
if (!canCreate) {
return Response.json({ error: 'Forbidden' }, { status: 403 });
}
// 4. Execute
const { data, error } = await supabase
.from('projects')
.insert({ ...validated, owner_id: user.id })
.select()
.single();
if (error) throw error;
return Response.json(data);
} catch (error) {
if (error instanceof z.ZodError) {
return Response.json({ error: error.errors }, { status: 400 });
}
console.error('API error:', error);
return Response.json({ error: 'Internal error' }, { status: 500 });
}
}
Part 5: Testing AI-Generated Code
AI doesn't run the code it generates. You must verify everything.
The Testing Pyramid for Vibe Code
/\
/ \ E2E Tests (Playwright)
/----\ - Critical user journeys
/ \ - Auth flows, payments
/--------\
/ \ Integration Tests
/------------\ - API routes, DB queries
/ \ - Component interactions
/----------------\
Unit Tests (Vitest)
- Utility functions
- Validation logic
- Pure components
Test Patterns for AI Code
Test the Happy Path AND Edge Cases
describe('formatBounty', () => {
// Happy path
it('formats positive amounts', () => {
expect(formatBounty(1.5)).toBe('1.50 SOL');
});
// Edge cases AI often misses
it('handles zero', () => {
expect(formatBounty(0)).toBe('0.00 SOL');
});
it('handles very small amounts', () => {
expect(formatBounty(0.001)).toBe('0.00 SOL');
});
it('handles very large amounts', () => {
expect(formatBounty(1000000)).toBe('1,000,000.00 SOL');
});
it('handles negative (should throw)', () => {
expect(() => formatBounty(-5)).toThrow();
});
it('handles NaN', () => {
expect(() => formatBounty(NaN)).toThrow();
});
});
Golden Tests for Regressions
Create snapshot tests that catch unintended changes:
// Capture expected output, fail if it changes
it('renders project card correctly', () => {
const { container } = render(
<ProjectCard project={mockProject} />
);
expect(container).toMatchSnapshot();
});
Part 6: Performance Optimization
AI code often works but isn't optimized. Here's what to watch for.
React Performance Patterns
Avoid Unnecessary Re-renders
// Bad: Object created every render
<ProjectList filters={{ status: 'open' }} />
// Good: Stable reference
const filters = useMemo(() => ({ status: 'open' }), []);
<ProjectList filters={filters} />
Use Server Components
// Bad: Client component fetching data
'use client';
function ProjectList() {
const [projects, setProjects] = useState([]);
useEffect(() => {
fetch('/api/projects').then(r => r.json()).then(setProjects);
}, []);
return <div>{/* render */}</div>;
}
// Good: Server component - no client JS needed
async function ProjectList() {
const projects = await getProjects(); // Direct DB call
return <div>{/* render */}</div>;
}
Virtualize Long Lists
// Bad: Render 1000 items
{projects.map(p => <ProjectCard key={p.id} project={p} />)}
// Good: Only render visible items
import { useVirtualizer } from '@tanstack/react-virtual';
function VirtualizedList({ projects }) {
const virtualizer = useVirtualizer({
count: projects.length,
getScrollElement: () => parentRef.current,
estimateSize: () => 100,
});
// Only renders ~10-20 items regardless of list size
}
Database Performance
Avoid N+1 Queries
// Bad: N+1 query
const projects = await supabase.from('projects').select('*');
for (const project of projects) {
const owner = await supabase
.from('users')
.select('*')
.eq('id', project.owner_id)
.single();
}
// Good: Single query with join
const { data } = await supabase
.from('projects')
.select(`
*,
owner:users(id, name, avatar_url)
`);
Part 7: Version Control & Collaboration
Commit Strategy for AI Code
# Bad: Giant commits
git commit -m "Add project feature"
# Good: Small, atomic commits
git commit -m "Add Project type definition"
git commit -m "Add getProjects query function"
git commit -m "Add ProjectCard component"
git commit -m "Add ProjectList with loading state"
git commit -m "Add tests for project components"
Document AI Decisions
Keep a log of significant AI interactions:
# decisions/2024-01-15-auth-flow.md
## Context
Needed to implement Google OAuth with Supabase.
## AI Tools Used
- Cursor Composer for initial implementation
- Claude for debugging redirect issues
## Key Decisions
- Used @supabase/ssr for server-side auth
- Chose PKCE flow over implicit
- Added custom callback handler for user profile creation
## Issues Encountered
- AI initially used deprecated getSession() - fixed to getUser()
- Missing RLS policies on users table - added manually
## Testing Done
- Manual testing of full OAuth flow
- Tested error cases (cancelled auth, expired tokens)
Part 8: Debugging AI-Generated Code
The Structured Debugging Workflow
When AI code breaks:
1. IDENTIFY: What's the exact error message/behavior?
2. ISOLATE: What's the smallest reproduction case?
3. ANALYZE: Read the code - what SHOULD happen vs what DOES happen?
4. HYPOTHESIZE: What could cause this difference?
5. TEST: Verify hypothesis with console.log, debugger, or tests
6. FIX: Make minimal change to fix the issue
7. VERIFY: Ensure fix works and doesn't break other things
8. DOCUMENT: Note what went wrong for future reference
Common AI Code Bugs
| Bug Type | Example | Fix | |----------|---------|-----| | Stale closure | useEffect with missing deps | Add all deps or use refs | | Type mismatch | Assuming API returns array | Add null checks, validate | | Race condition | Multiple rapid state updates | Use useReducer or debounce | | Memory leak | Missing cleanup in useEffect | Return cleanup function | | Hydration error | Server/client render mismatch | Use dynamic import or useEffect |
Part 9: When to Get Human Help
Vibe coding has limits. Get expert help when:
Security-Critical Features
- Authentication and authorization
- Payment processing
- Handling sensitive user data
- Compliance requirements (GDPR, HIPAA)
Performance-Critical Code
- Database query optimization
- Real-time features at scale
- Complex caching strategies
Complex Business Logic
- Financial calculations
- Multi-step workflows
- Integrations with legacy systems
You've Been Stuck
- Same bug for 2+ hours
- AI keeps generating wrong solutions
- Code works but you don't understand why
Professional Vibe Coder's Checklist
Before shipping any AI-generated feature:
Architecture
- [ ] Follows established project patterns
- [ ] Types are complete and accurate
- [ ] No unnecessary dependencies added
Security
- [ ] Input validation on all user data
- [ ] Authentication checks on protected routes
- [ ] No secrets in code or client bundle
- [ ] RLS policies in place
Quality
- [ ] All TypeScript errors resolved
- [ ] Linter passing with no warnings
- [ ] Tests written for critical paths
- [ ] Error handling complete
Performance
- [ ] No N+1 queries
- [ ] Large lists virtualized
- [ ] Images optimized
- [ ] Bundle size reasonable
UX
- [ ] Loading states implemented
- [ ] Error states handled gracefully
- [ ] Empty states designed
- [ ] Mobile responsive
Accessibility
- [ ] Keyboard navigation works
- [ ] ARIA labels present
- [ ] Color contrast sufficient
- [ ] Screen reader tested
Conclusion
Vibe coding is a powerful skill, but it requires discipline. The best vibe coders:
- Invest in context - Cursor rules, documentation, type definitions
- Prompt strategically - Layered context, chained prompts, constraints
- Verify everything - Tests, security audits, performance checks
- Commit frequently - Small changes, clear history, easy rollbacks
- Know their limits - Get help when security or complexity demands it
Master these practices, and you'll ship faster AND with higher quality than most developers—vibe coding or not.
Need help with a specific vibe-coded project? Post it on CoderVibez and get expert assistance from developers who specialize in polishing AI-generated code.